Erratum to: “On n-term approximations with respect to frames bounded in L p (0, 1), 2 < p < ∞”

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper bounds on the solutions to n = p+m^2

ardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...

متن کامل

L p-SPACES FOR 0 < p < 1

In a first course in functional analysis, a great deal of time is spent with Banach spaces, especially the interaction between such spaces and their dual spaces. Banach spaces are a special type of topological vector space, and there are important topological vector spaces which do not lie in the Banach category, such as the Schwartz spaces. The most fundamental theorem about Banach spaces is t...

متن کامل

Stabilizing isomorphisms from l p ( l 2 ) into L p [ 0 , 1 ]

Let 1 < p ̸= 2 < ∞, ε > 0 and let T : lp(l2) into → Lp[0, 1] be an isomorphism Then there is a subspace Y ⊂ lp(l2), (1 + ε)-isomorphic to lp(l2), such that: T|Y is an (1+ ε)-isomorphism and T (Y ) is Kp-complemented in Lp [0, 1], with Kp depending only on p. Moreover, Kp ≤ (1 + ε)γp if p > 2 and Kp ≤ (1 + ε)γp/(p−1) if 1 < p < 2, where γr is the Lr norm of a standard Gaussian variable.

متن کامل

Embedding Subspaces of L P Intò N P , 0 < P < 1

It is shown that if X is n-dimensional subspace of Lp, 0 < p < 1, then there exists a subspace Y of`N p such that d(X; Y) 1 + " and N C("; p)n(log n) 3 .

متن کامل

upper bounds on the solutions to n = p+m^2

ardy and littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. they believed that the number $mathcal{r}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{r}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Notes

سال: 2017

ISSN: 0001-4346,1573-8876

DOI: 10.1134/s0001434617030348